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Chapter 1

Theory

This section gives a summary of the equations required for performing CCS
calculations. For a fuller derivation of the equations presented, the reader is
referred to, for example, ref. [1]. Please note the slight difference in notation:

Hord = H̃.
In quantum dynamics simulations, the wave function, |Ψ〉, is expressed in

terms of a superposition of coherent states. The projection of a multidimensional
coherent state |z〉 on to spacial coordinates may be written in the Klauder form
[?]:

〈x|z〉 =
∏
α

(γα
π

) 1
4

exp

[
−γα

~

(
x(α) − q(α)

)2
+
i

~
p(α)

(
x(α) − q(α)

)
+
ip(α)q(α)

2~

]
,

(1.1)
where (α) indexes the degrees of freedom of the system and γα is dependent
on the characteristic frequency of the α degree of freedom. The position and
momentum vectors can be expressed terms of the complex coordinate z:

q =
γ−

1
2

√
2

(z∗ + z) (1.2)

and

p = i~
γ

1
2

√
2

(z∗ − z) , (1.3)

where γ is actually a diagonal matrix but we denote the elements γα for brevity.
The positions and momenta of the coherent states evolve independently of

those of the other coherent states and according to Hamilton’s equations:

dz

dt
= − i

~
∂H̃ (z∗, z)

∂z∗
and

dz∗

dt
=
i

~
∂H̃ (z∗, z)

∂z
. (1.4)

In these equations H̃ is the averaged or reordered Hamiltonian, H̃ = T̃+Ṽ . The
averaging arises because the coherent states are diffuse objects. Consequently,
the whole potential surface is, in principle at least, sampled by each coherent
state at all times.

The potential energy of a coherent state z is obtained by evaluating the
matrix element

〈z1|V̂ |z2〉 =

∫
〈z1|x〉〈x|V̂ |x〉〈x|z2〉dx , (1.5)
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CHAPTER 1. THEORY 4

for z1 = z2 = z. The widths of the coherent states, the γα’s which appear in
equation 1.1, depend on the curvature of the potential but not on time. As a
result, we can compute an averaged potential energy surface,

Ṽ
(
z
(α)
1 , z

(α)
2

)
=

1

〈z(α)1 |z
(α)
2 〉

∫
〈z(α)1 |x(α)〉〈x(α)|V̂ (α)|x(α)〉〈x(α)|z(α)2 〉dx(α) ,

(1.6)
and then consider the coherent states as point objects for the purposes of calcu-
lating potential energy. Elsewhere in the literature Ṽ is denoted by Vord where
ord stands for ordered. This alternative notation arises because the appropriate
energy operator can be written in terms of creation and annihilation operators
in such a way that within products creation operators appear to the left of any
annihilation operators. The reordering required is not totally trivial because
the operators do not commute,

[
â, â†

]
= 1, so transposing pairs of operators

introduces extra terms. This reordering is necessary because â|z〉 = z|z〉 and
〈z|â† = 〈z|z∗ but other combinations, such as â†|z〉, are not defined.

Expressed in terms of creation and annihilation operators, the position and
momentum vectors operators are

q̂ =
γ−

1
2

√
2

(
â† + â

)
and p̂ = i~

γ
1
2

√
2

(
â† − â

)
. (1.7)

As an example of reordering, consider the kinetic energy operator T̂ = p̂/2m.
Substituting in the expression for p̂ gives

〈z|T̂|z〉 =
−~2γ

2
〈z|
(
â†

2

− ââ† − â†â + â2
)
|z〉 =

−~2γ
2
〈z|
(
â†

2

− 2â†â− 1 + â2
)
|z〉

(1.8)
Using â|z〉 = z|z〉, 〈z|â† = 〈z|z∗ and equations 1.2 and 1.3, and defining the

averaged kinetic energy as T̃ = 〈z|T̂|z〉/〈z|z〉 in analogy to equation 1.2 gives

T̃ =
p2

2m
+
∑
α

~2γα
4m

. (1.9)

Although the motion of coherent states in phase space is independent, the
contribution of each coherent state to the wave function is dependent on all the
coherent states. The projection of the wave function onto coherent state j is

〈zj |Ψ〉 = Cj exp

(
i
Sj
~

)
, (1.10)

where Sj is the classical action, which is defined as

Sj(t) =

∫ t

0

[
i~
2

(
z∗

dz

dt′
− dz∗

dt′
z∗
)
− H̃ (z∗, z)

]
dt′ . (1.11)

Coherent states are not orthogonal so the identity matrix has the nontrivial
form:

Î =

N∑
j,k

|zj〉
(
Ω−1

)
jk
〈zk| , (1.12)
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where N is the number of coherent states and Ωjk = 〈zj |zk〉 is the overlap of
states j and k. It follows that the wave function may be written:

|Ψ〉j =
∑
k

Dk exp

(
i
Sk
~

)
|zk〉 , (1.13)

where the calculation of Dk using

Cj exp

(
i
Sj
~

)
=
∑
k

ΩjkDk exp

(
i
Sk
~

)
(1.14)

is the slowest step of the method.
The time evolution of the amplitudes Cj is obtained from Schrödinger’s

equation,
d|Ψ〉

dt
= − i

~
Ĥ|Ψ〉 . (1.15)

Multiplying both sides from the left by 〈zj | gives, after a little algebra,

〈zj |
d|Ψ〉

dt
= − i

~

N∑
k,l

〈zj |zk〉H̃
(
z∗j , zk

) (
Ω−1

)
k,l
〈zl|Ψ〉 . (1.16)

Finally, we consider
d

dt
〈zj |Ψ〉 = 〈żj |Ψ〉+ 〈zj |Ψ̇〉 , (1.17)

where the dot indicates the derivative with respect to time. After some manip-
ulation and upon defining

δ2H̃
(
z∗j , zk

)
= H̃

(
z∗j , zk

)
− H̃

(
z∗j , zj

)
−
∂H̃

(
z∗j , zj

)
∂ zj

(zk − zj) , (1.18)

we eventually arrive at

dCj

dt
=
i

~

N∑
k,l

〈zj |zk〉δ2H̃
(
z∗j , zk

) (
Ω−1

)
kl
Cl exp

(
i

~
(Sl − Sj)

)

=
i

~

N∑
k

〈zj |zk〉δ2H̃
(
z∗j , zk

)
Dk exp

(
i

~
(Sk − Sj)

)
.

(1.19)



Chapter 2

Compiling the program

Compilation of the program is handled by Make. All platform specific details
such as compiler name and libraries are contained in the file make.options.
The makefile itself is therefore platform independent. make.options files for
different platforms are stored in the makeoptions directory. The appropriate
file should be copied to make.options in the src directory. The program should
then compile by simply typing make.

The program comes with a limited version of the lapack library. This is for
use on systems which do not have optimised lapack libraries already installed
and may be compiled by typing make lapack. It may be that even on systems
with lapack libraries, these routines may be quicker/easier to use. To link the
main program to this library, add -L. -lccslapack to the LIBS variable in the
make.options file. The program also comes with a dummy parallel library. This
must be used if a serially executing program is required. It is made by typing
make parallellib. This library is in src/mpiscalapack along with mpif.h files.
Please note that these are not to be used if the program is to be executed in
parallel. In that case the mpif.h that comes with the mpi distribution that is to
be used. For creating a serial program, add -L. -ldummyparallel to the LIBS

in the make.options file and -Impiscalapack to the F90FLAGS variable. If
they are to be used, the lapack and dummy parallel libraries should be made
before the main program.

To compile in parallel, replace -Impiscalapack in the F90FLAGS variable
with -DUSE SCALAPACK and remove -ldummyparallel from the LIBS variable.
Specifying the compiler as mpif90 normally includes the requisite MPI libraries
but you will also need to add appropriate options to the LIBS variable for
the ScaLapack routines. By default, the program uses the INPLACE option
provided by the MPI2 specification. It is possible to use MPI1 instead by
adding -DMPI1 to the F90FLAGS variable.

The program also comes with several utility programs, see chapter 4. Some
of these have make files but not all. Some are perl scripts and as such do not
need one. Makefiles for these utility programs don’t use the make.options file
which the main program does. Consequently, the makefile should be edited to
take account of platform specifics.
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Chapter 3

Using the program

The program requires several input files. The behaviour of the program is con-
trolled by a file called run.inpt. This file contains details such as the number
of steps to run and whether a classical or quantum calculation is to be per-
formed. See section 3.1. Details of the interactions are given in the file called
hamiltonian.inpt whose format is described in section 3.4. It is also necessary
to have a file called states.inpt the contents of which are described in section
3.3.

3.1 Inputs

The following options may be specified in the run.inpt file

General Options

nsteps n Total number of steps to perform.

dt timestep Set the time step to timestep fs.

ndf N Number of degrees of freedom

nbasis nfcts Number of basis functions

basis basistype How to choose basis functions. Requires other options im-
mediately after. See section 3.2

energy unit Energy units to use. unit must be either au, eV, H or akma

gamma Specify gammas. Should be followed by ndf value pairs i G each on
a separate line. Clearly must come after ndf option!

classical To perform a classical simulation. Omit to perform a quantum sim-
ulation.

semiclassical To perform a semiclassical simulation. The initial D’s are cal-
culated from the initial C’s. These are then used as in the quantum cal-
culations but they are kept constant throughout the simulation.

restart Do a continuation simulation

7



CHAPTER 3. USING THE PROGRAM 8

verbosity v How info should be written out. 0 - standard, 1 - more, and 2 -
everything

omega0 When is zero zero for overlap matrix? Default: 10−10

minprob mp For basis function removal

maxz mz For basis function removal

randseed rs Start random number generator with rs as a seed

Options to control output files

writepos posfreq Frequency with which to write positions to a file.

writezpos posfreq Frequency with which to write z-positions to a file.

writeacf acffreq Frequency with which to write auto correlation function

crosscorr ccorlog Frequency with which to write cross corrlelation to file

harmcorr harmcorr Frequency with which to write harmonic correlation

writeCD CDfreq Frequency with which to write C and D

writeamp ampfreq Frequency with which to write amplitudes, includes basis
function positions too in same file.

writeaction actopmfreq Frequency with which to write the classical action.
Default: 0.

writeenergy energyfreq Frequency with which to write the energy. Default:
100

writenorm normfreq Frequency with which to write the norm of the wave
function. Default: 100

writebasisnorm basisnormfreq Frequency with which to write the norm of
each basis function. I.e. C∗iDi∀i. Default: never

dumpfreq df Frequency with which to write sysstate.out for restarts

solve method Method by which to calculate D given C. By default it uses LA-
PACK when run in serial and ScaLapack when run in parallel. Can now
use Lapack when run in parallel. There is also the option of using a con-
jugate gradients routine but this seems to be not as accurate and takes as
long if not longer than using LAPACK. method should be either LAPACK,
CG or SCALAPACK.

cgepsilon v Convergence parameter for CG routine.
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3.1.1 Energy units

The energy units of the output depend upon the various parameters of the
hamiltonian etc. However, there are a few options although at the moment I
can’t remember the exact details.

The akma units are
√

(kcal/mol/amu) Å. These are the units of the potential
supplied by Emilio. To convert to kcal/mol it is necessary to multiply by 0.3105.
The code can do this for you. To get the energy in kcal/mol from akma units
specify

energy akma kcalmol

in the run.inpt file.

3.1.2 writepos and writezpos

Usage: writepos freq, writezpos freq

Write out positions of basis functions every freq steps. Defaults to 0 indi-
cating no output. writepos gives position and momentum q and p. writezpos
gives <(z) and =(z) pairs. The first number on each line is the time in fs.

3.1.3 verbosity

Specify how information should be written out. Usage: verbosity n where n
is an integer s.t. n ≥ 0

3.1.4 restart

This option specifies that the simulation should continue from where a previous
run finished. This requires a restart.inpt file. At the end of the run, the program
writes out a file called systate.out. To restart from this, simply copy it to
restart.inpt and add the keyword restart to the run.inpt file.

3.1.5 omega0

Specify how the tolerance on overlap matrix elements being zero. If |〈z|z′〉| < tol
then the overlap is set to zero.

Usage: omega0 tol

where tol is a real number and tol > 0.

3.1.6 minprob and maxz

These two options which may be used separately or together allow basis func-
tions which have escaped to be removed from the calculation and thereby pre-
venting the energy becoming infinite. Usage: minprob mp

maxz mz

The first causes basis functions whose probability is less than mp to be removed.
While the second removes basis functions which have |z| > mz. Once removed,
a variable (incbf) is set to false and the basis function is no longer updated.
When calculating energy and dynamics it is not included.
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3.2 Basis Functions

There are several ways of choosing basis functions. The method is chosen:
basis method

where method may be one of the following

• Grid

• Random gaussian

• Initial states

• Harmonic Oscillator

• From file

3.2.1 Grid

This doesn’t quite work. There should be (nq ∗ np)N basis functions where N
is the number of degrees of freedom and nq and np are the number of divisions
along the q and p axes. Instead I think there are only (nq ∗ np).

3.2.2 Random Gaussin

Choose initial basis functions randomly from a gaussian distribution. A maximu
energy may be specified. The widths of the distributions in q and p for each
degree of freedom then needs to be specified. The position and momentum for
each function is chosen separately at random from a Gaussian distribution. The
Gaussian is centred on the appropriate value of z given in the states.inpt file.

For example, the run.inpt file might contain
basis rgauss

enmax 5

1.0 1.0

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

The numbers are the widths of the distributions in q and p for each mode.
The energy cutoff enmax is optional.

3.2.3 Initial states

It is possible to use the initial states as the basis functions. This simply requires
the inclusion of the key word istates. The number of states given in the
states.inpt file must be the same as the number of basis functions specified in
the run.inpt file. If this is not the case the program stops. The program could
easily be amended but it would require reallocating all arrays which have a
dimension dependent on the number of basis functions. The initial states are
given in terms of q and p.
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Initial states may now also be used in conjunction with harmonic oscillator
basis functions. See the section on the Harmonic Oscillator for details.

Also, it is now possible to read in basis functions from another file. This has
the advantage that it allows you to separate the initial state and the initial basis
functions. In the new file it is also possible to specify the initial amplitudes.

3.2.4 Harmonic Oscillator

The initial basis functions may be sampled from the harmonic oscillator wave
functions. In coherent states the ground state wave function is

ψn(z) =
〈n|z〉
π1/2

=
zn

(πn!)
1/2

exp

(
−|z|

2

2

)
. (3.1)

The probability for a particular z is the |〈n|z〉|2 = 〈z|n〉〈n|z〉.
Keyword for run.inpt file: harmosc
There are a few optional inputs which maybe omitted. These are.

maxtries n Default value for n is 20.

rmax r Default value for r is 3.5.

super ns nb ns of the modes are in vibrational states which are superpositions
of harmonic oscillator states. The maximum number of harmonic oscillator
states used to describe the superpositions is nb.

The next line should contain the keyword vibstates and this should be followed
by a further ndf sets of lines. Each line begins with an integer denoting which
method to use. The remainder of the line is governed by the method. The
choice is

0 Put all the basis functions at the origin in this mode

1 To be followed by an integer n and a real number comp. Choose basis fns
randomly from the harmonic oscillator state |n〉 but with a compression
factor of comp.

2 As 1 except two extra real numbers are required dx and dy which give a
displacement for the final basis function with respect to the harmonic
oscillator wave function.

3 Same inputs as 1. Basis function however is read from the states.inpt file,
rather than being chosen randomly. In other words, this option is like
using the istates option for choosing basis functions.

4 As 3 but allows an offset to be specified for the harmonic oscillator in the
same way as option 2. The basis functions in the states.inpt file should be
offset already. The offset is applied in reverse which projecting the wave
function on to the harmonic oscillator wave function.

5 Randomly choose basis functions from a wave function which is a superposi-
tion of harmonic oscillator states. Samples from a rectangular box from
qmin to qmax and from pmin to pmax. The maximum probability den-
sity is also required. Usage 5 qmin qmax pmin pmax maxprob nbf the nbf
coefficients.
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6 currently unused. They have been left for sampling states which are super-
positions of harmonic oscillator states.

7 Use the basis functions in the states.inpt file. The vibrational mode however
is a super position of harmonic oscillator states. The number 7 should
be followed by the number of states in the expansion (≤ ns above) which
should in turn be followed by the specified number of coefficients for the
harmonic oscillator states (ground state, ν=1, etc.)

8 As for 7 except that the 8 is followed by <(zoffset) and
Im(zoffset). The number of states in the expansion comes next followed
by the coefficients.

The compression factor cf reduces the width (compresses) the distribution
from which the basis functions are chosen. For the ground state this is achieved
simply by dividng the chosen z by cf. This may not be the best way of doing
things.

I have found a way of compressing higher order states. It stems from the
fact that in p-space higher order states are circular with a maximum at a set
value of |z|. Integrating over θ gives a probability distribution which looks a bit
like an offset and distorted gaussian. The distribution in r is

|ψn(r)|2 =
1

πn!
exp

(
−(r − r0)2/σ2

)
r(2n+ 1) . (3.2)

If r0 = 0 and σ = 1 then this reduces to the usual expression. Varying σ
changes the width of the distribution. However, it also changes the position of
the maximum probability. The program therefore calculates r0 so as to keep
the maximum in the same place.

r0 =
(2n+ 1)(1− σ2)√

4n+ 2
. (3.3)

3.2.5 Initial basis from file

Rather than specifying the basis functions in the initial states file, states.inpt,
the initial basis functions may be given in a file called basis.inpt. This option
is selected by including

basis file

in the run.inpt file. The first line of the file should contain the keyword basis

followed by the number of states which appear in the file. This should be the
same as the number given in the run.inpt file. The second line may optionally
contain the words amplitudes or unitamp. The former indicates amplitudes
are specified as well as position, q, and momentum, p, while the latter indicates
that the amplitudes should all be equal such that the total amplitude is 1.

For a system with 6 degrees of freedom, a basis file containing a single basis
function might look like the following:

nbasis 1

amplitudes

q1 p1 <(A1) =(A1)
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q2 p2 <(A2) =(A2)
q3 p3 <(A3) =(A3)
q4 p4 <(A4) =(A4)
q5 p5 <(A5) =(A5)
q6 p6 <(A6) =(A6)

Obviously, qi, pi, <(Ai) and =(Ai) should be replaced by the appropriate nu-
merical values. If the word amplitudes is omitted, or if unitamp is specified, the
amplitudes may be omitted and will be ignored if they are there.

Basis set files can be created using the utility program createbasis, see sec-
tion 4.8.

3.3 Initial States

The file states.inpt contains details of coherent states. These were originally
used for calculating correlation functions and initial amplitudes. This coherent
states listed in this file can also be used as the initial basis functions or as the
centres of distributions. See elsewhere for details.

The first line of the file should contain the keyword nstates followed by the
number of states which appear in the file. This could be 0. Even if it is 0, this
file still needs to exist and contain this first line. Each state starts with the
keyword state which, for ease of reference may be followed by a number/other
text but only the keyword is considered. Each state is given by a position q and
momentum p separated by one or more spaces for each degree of freedom. Each
q p pair should be on a new line. Only the number of states given on the very
first line will be read.

3.4 Potentials

The following systems are available

• Quartic tunnelling + harmonic bath

• Henon-Heiles - correct?

• Polynomial, Morse and Gaussians

• Classical Polynomial, Morse and Gaussians

• Cartesian potentials

3.4.1 Quartic tunnelling + harmonic bath

3.4.2 Henon-Heiles

3.4.3 Polynomial, Morse and Gaussian Potentials

So far this is the most general type of potential which this program can han-
dle. Each mode can have any combination of polynomial, morse and gaussian
potentials. At the moment polynomials up to and including x10 are supported.
Further extension is possible especially as there is actually a reccurrence relation
which simplifies the reordering process. This however has not been used here.
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To use these potentials the hamiltonian file must begin with the keyword
polymorse. This is to be followed by the number of degrees of freedom and
then the masses. It may be that the masses are incorporated into the generalised
coordinates in which case the masses should be set to 1.0. After the masses each
mode should be listed together with its potential. An example is shown below.

polymorse

ndf 3

mass

1.0

1.0

1.0

mode 1

poly 2

x0 0.0

x1 0.0

x2 5.0

mode 2 morse

A 2.0

alpha 0.5

q0 1.0

mode 3

gaussian

A 2.0

q0 0.5

sigma 1.0

end

Potential types

There are three types of potentials available within the polymorse Hamiltonian.
The first is a polynomial and is selected by the keyword poly followed by the
order p (highest power) within the polynomial. This is then followed by p + 1
lines containing a label and the coefficient of the corresponding term. Note that
the label is ignored by the program.

The next potential type is the Morse potential. The unaveraged Morse is

Vmorse(q) = A (1− exp [−α (q − q0)])
2
. (3.4)

This potential may be averaged either by direct integration or using

exp
(
Â+ B̂

)
= exp

(
B̂
)

exp
(
Â
)

exp

(
1

2

[
Â, B̂

])
, (3.5)

where
[
Â, B̂

]
is the commutator. Care must be taken in the application of

this formula however. Specifically, the exponent Â + B̂ must be the complete
exponent and may not be multiplied by any constants. The correct average
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potential is

Ṽmorse (q) = A

(
1− 2 exp

[
−α (q − q0) +

1

4

α2

γ

]
+ exp

[
−2α (q − q0) +

α2

γ

])
.

(3.6)

Note that this equation can not be written in the form (1 − exp(D))2. This
function has a minimum at

q0 +
3α

4γ
. (3.7)

As of January 2009 I believe it makes most sense to choose q̄0 = q0 − 3α/(4γ)
for the averaged potential so that the minimum is in the same places as in the
original potential. The shift in the minimum occurs because the potential is
asymmetric. Whether or not to reposition the minimum obviously depends on
the system which is being modelled. However, I feel that an experimentally
obtained position q0 will probably already be in the correct place even given the
quantum nature of the averaging therefore q̄0 should be used instead.

The final potential type is a Gaussian. The unaveraged potential is

VGaussian (q) = A exp
[
−α (q − q0)

2
]
. (3.8)

It appears that the variable q0 is actually used in the code despite being given
in the list of required inputs above. Therefore all Gaussians are centred at zero.
The averaged potential is

Ṽ (q) = A

√
γ

γ + α
exp

[
− γα

γ + α
q2
]
. (3.9)

In the code, it is actually written in terms of z:

Ṽ (z∗1 , z2) = A

√
γ

γ + α
exp

[
− α

2 (γ + α)
(z2 + z∗1)

2

]
. (3.10)

Coupling

This potential type also allows a polynomial type coupling between each pair
of modes to be sepecified. The coupling follows immediately after the word end

which is there to denote the end of the uncoupled part of the potential and
begins with the keyword coupling followed by the number of couplings given.
It is not necessary to specify all couplings. Those not included will be set to
zero.

coupling 2

1 2 50.0 1.0 1.0

1 3 20.0 1.0 1.0

The two integers denote the modes being coupled. The first number should be
less than the second. The three real numbers indicate the coupling parameters
a12, a21 and a22 where the coupling potential is

Hcoup = a12xy
2 + a21x

2y + a22x
2y2 (3.11)
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The reordered potential and therefore the one actually used is

Hcoup
ord =a12x

(
y2 +

1

2γy

)
+ a21y

(
x2 +

1

2γx

)
+ a22

(
x2 +

1

2γx

)(
y2 + +

1

2γy

)
.

(3.12)

Coupling Truncation

Given that the first two terms in the Hcoup are essentially cubic, the coupling
often tends to −∞ as x and y tend to ±∞. For most potential wells this is not a
problem since the potential energy increases to ±∞ as x and/or y become large.
This however is not so for Morse potentials. In this case the potential tends to
a constant in either the positive or negative limits. In this case it is possible for
basis functions to escape in a manner such that they are accelerating away from
the origin. The problem ultimately arises because Hcoup is not a sufficiently
good fit to the energy surface.

One option is to truncate the averaged coupling potential smoothly using an
error function. This can be done by writing

Ht−coup
ord (qi, qj) = Hcoup

ord (qi, qj)× Tord (q) . (3.13)

where q is either qi or qj and

Tord(q) =
1

2

(
erf

(
−d (q − x0)

w

)
+ 1

)
. (3.14)

The truncation occurs over a distance w and is centred on x0. d = ±1 is the
direction in which the coupling is truncated. For example, if d = −1 then
s(q) = 0 if q � x0 thereby truncating the potential as q → −∞.

Truncation as q → ±∞ can be achieved using

Tord(q) =
1

2

(
erf

(
− (q − x0)

w

)
+ erf

(
(q + x0)

w

))
. (3.15)

However, this is really inconsistent with the idea of averaged and unaveraged
potentias. A better option therefore is to truncate the unaveraged potential
using a Heaviside function. A smoother function could be used if one could
be found for which the averaging integral could be calculated. The unaveraged
potential is then

Ht−coup (qi, qj) = Hcoup (qi, qj)× T (qi, qj) (3.16)

where

T (qi, qj) = Θ(c1 − qi)×Θ(c2 − qi)×Θ(qj − c3)×Θ(c4 − qj) . (3.17)

Here Θ(x) is the Heaviside function and is defined as

Θ(x) =

{
0 if x < 0,

1 if x > 0.
(3.18)
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By choosing ck’s appropriately, this expression may be reduced to 3 cases: trun-
cation occurs when one q approaches either +∞ or −∞; when one |q| approaches
∞; and when |qi| and |qj | approach∞. These correspond to truncation methods
2 - 4 in the program. See the code for the final averaged function!

To summarise, the available methods are

±1 Truncate the reordered coupling potential using equation 3.14. The sign
indicates whether the coupling is truncated towards +∞ or −∞.

±2 Truncate the unordered coupling potential using a step function s(q) = 0,1
depending on x. The truncated unordered potential is then reordered by
integration. Same sign convention/arguments as with ±1. There is no
width argument.

+3 Use the same truncation as for ±2 except this time truncate as the specified
mode goes to ±∞.

+4 As for 3 except truncate with regards to both modes. This requires two
cutoffs, one for each mode.

+5 Same as 1 except that the truncation is applied as the specified mode goes
to ±∞ using equation 3.15. Currently only implemented in the classical
polymorse hamiltonian.

Each coupling may be truncated separately. Truncation is achieved by
adding some lines to the file hamilton.inpt after the coupling terms. The first
line to add contains the keyword couptrunc and gives the number of coupling
trunctions:

couptrunc 2

with each subsequent line corresponding to a separate truncation. All trunca-
tions start with

i j tm

where i and j are the coupled modes with i < j, and tm is the truncation
method. What follows then depends on the truncation method.

For method tm = ±1, the line should also contain which co-ordinate qi, or qj
controls the truncation, the location of the point where T = 0.5 and the width,
w. For example

1 2 -1 1 -0.45 0.1

truncates the coupling between q1 and q2 using method -1 as q1 → −∞. T = 0.5
at q1 = −0.45 and the cutoff width is 0.1.

The specification for methods ±2 and +3 looks almost the same as for meth-
ods ±1 except the width is not required. Also, the position refers to the location
of the step in the Heaviside function. The specification for the final method,
+4, requires only an addition two cutoffs, one for qi and the second for qj :

1 2 4 0.45 0.5
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Coupling switch

As well as truncating the coupling when one of the coupled degrees of freedom
gets too large in absolute terms, the truncation can also be switched by the
position of a third mode. The coupling then becomes

Htscoup (qi, qj , qk) = Hcoup (qi, qj)× T (qi, qj)× w(qk) , (3.19)

where w(qk) is the switching function. There are two switching functions avail-
able. The first is a Heaviside function although this becomes an error function
on averaging. The second is a gaussian located at the origin. Using a Heaviside
function gives an impulse to the switching co-ordinate which causes unphysical
behaviour whereas using a gaussian gives a gradual. Obviously the gaussian
still affects the equations of motion for the switching mode qk but in a much
smoother manner. In the case of the gaussian switch,

w(qk) = e−γkωkqk , (3.20)

where γk is the mode frequency used through out the program, and ω is the
width of the switching gaussian.

Coupling switching may be specified for each coupling individually. The
switching is given in the hamiltonian.inpt file and is announced using the
keyword coupswitch followed by the number of switchings. As with the coupling
truncation, each switch is specified in terms of the two coupled modes, the
switching method, and the mode which controls the switching. If the Heaviside
method is used, method 1, then the direction of the switch and its position are
also required. If however, the gaussian switch is used it is sufficient to specify
the width of the gaussian, ω. For example

coupswitch 2

1 2 1 3 1 0.5

1 3 2 2 1.5

will switch the coupling between q1 and q2 using a Heaviside function of q3 with
the coupling being turned off for q3 � 0.5. Meanwhie, the coupling between
modes q1 and q3 will be switch using a gaussian function of q2 with a width of
1.5.

3.4.4 Classical Polynomial, Morse and Gaussian Poten-
tials

This set of Hamiltonians is based on thePolynomial, Morse and Gaussian Po-
tentials except that the unaveraged potentials are used. The use and options
should all be as described in the previous section except that a keyword of
classicalpolymorse should be used instead of polymorse. The hamiltonian
file needs to contain the particle masses and the interactions between particles.

3.4.5 Cartesian Potentials

To date, the only potential that I have managed to integrate in 3 cartesian
dimensions is the gaussian potential centred at the origin. This is okay as
Morse potentials can be expressed as the sum of such gaussians. An example
file for a 2 particle, 3D system is
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cartesian
ndf 6
mass
79.904 Br
79.904 Br
interactions 1
maxterms 3
gauss 1 2 3
461264.0 0.417655
46126.418 0.65923
-370.9415 1.385

The number of degrees of freedom is the product of the number of particles and
the number of cartesian dimensions. The masses of all the particles (not degrees
of freedom as with other hamiltonian types) need to be given.

The line interactions indicates the number of pair potentials which will be
specified. maxterms gives the maximum number of terms used to describe
these interactions. Currently it is only possible to give pair potentials as sums
of gaussians, so each pair potential starts with the word gauss followed by two
numbers corresponding to the particles between which the potential is to be
applied. The third number is the number of gaussians used to describe the
potential. This must be less than or equal to maxterms.

The gaussian parameters are A and σ such that

Vg(q) = A exp

(
− q2

2σ2

)
(3.21)

The averaged potential for q = q(α) − q(β) is

Ṽ (z∗1, z2) =

√
2σ2γαγβ

2γαγβσ2 + γα + γβ

× exp

−
(√

γβ

(
z
(α)∗

1 + z
(α)
2

)
−√γα

(
z
(β)∗

1 + z
(β)
2

))2
4γαγβσ2 + 2γα + 2γβ

 .

(3.22)

Constraints

Constraints may optionally be added by adding something like the following to
the hamiltonian.inpt file.

constraints 1
1 1 2 3.8628339

The first line indicates that there is 1 constraint. Currently, it is not actually
possible to handle any more than this. The second line begins with the con-
straint number and this is followed by the indices of the two particles whose
separation is to be constrained, in this case particles 1 and 2. Finally, the real
number is the desired separation in Å.
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The constraints are achieved using a modified Hamiltonian with Lagrange
multipliers. The constrained Hamiltonian is

Hc = T + V − λ1σ1 − λ2σ2 (3.23)

in which σ1 and σ2 are the constraints and λ1 and λ2 are the Lagrange multi-
pliers. Since the constraint terms are identically zero when the constraints are
satisfied, no attempt has been made to average or reorder these terms. Instead
we assume that any such process would simply result in a different choice of the
Lagrange multipliers. This assumption gives

H̃ = T̃ + Ṽ − λ1σ1 − λ2σ2 (3.24)

Unusually when compared to most constrained simulations that I am aware of,
we need to constraints. This is because the basis functions z describe both
position and momentum and a constraint is needed for each.

The first constraint is simply the required separation:

σ1 =
∑
α

(
x(1α) − x(2α)

)2
− d2 , (3.25)

in which x(1α) is the position of the 1st constrained particle in the cartesian α
direction. d is the required separation of particles 1 and 2. When this constraint
is satisfied, σ1 = 0.

The second constraint states that the relative velocity of the two particles
parallel to the separation vector; this should be zero. It is of course possible to
have a non-zero relative velocity perpendicular to the separation vector as this
corresponds to a rotation of the molecule. The constraint is

σ2 =

∑
α

(
v(1α) − v(2α)

)
.
(
x(1α) − x(2α)

)[∑
α

(
x(1α) − x(2α)

)2] 1
2

, (3.26)

in which v(1α) is the velocity of the 1st constrained particle in the cartesian α
direction. As with the first constraint, when this constraint is satisfied, σ2 = 0.

3.4.6 Classical Cartesian Potentials

These are the same as the Cartesian potentials except that they are introduced
by the keyword classicalcartesian and they use the unordered potentials.

3.5 Output Files

3.5.1 amplitudes.out

This file contains the complex amplitude of each basis function and the full
position in phase space. Each entry starts with a comment giving the time/step
number and is terminated by a blank line. In between there is one line for each
basis function. Each of these lines records the time, real and imaginary parts of
the amplitude and the position and momentum for each degree of freedom.
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The wave function is

|Ψ〉 =

N∑
j=1

Dj exp (iSj) |z〉j . (3.27)

The amplitude written out in the amplitudes file is Dj exp (iSj).

3.5.2 energy.out

The system energy is

E =

ndf∑
j

ndf∑
k

D∗jDkHord

(
z∗j , zk

)
ei(Sk−Sj) , (3.28)

where ndf is the number of degrees of freedom. When the polymorse hamiltonian
is used, the program also writes out the energies of the individual modes. In
this case energy.out contains the time and total energy followed by the energy
of each mode followed by the sum of the coupling energy terms which that mode
each mode is involved in. It follows therefore that the total energy is the sum
of the individual modes plus one half of the sum of the coupling energy.

3.5.3 hexpect.out

This contains the expectation values for the total energy and the energy in each
mode. Also included is the change in energy of each due to basis functions being
dropped.

In quantum mechanics we can use the density operator ρ̂ to calculate the
expectation value of some property A without complete knowledge of the wave
function using

〈A〉 = Trρ̂Â , (3.29)

where Tr denotes the trace of the matrix. The trace of the density operator has
to be 1 for the system to be properly normalised

Trρ̂ = 1. (3.30)

The energy expectation value is therefore

〈H〉 =
∑
i

C∗iDiHord (z∗i , zi) . (3.31)

This quantity is typically conserved better than the energy given above. Also
contains the expectation values of the individual modes if the polymorse hamil-
tonian is used.

3.5.4 norm.out

This file contains the norm of the wave function. The norm is

〈Ψ|Ψ〉 =
∑
i

C∗iDi . (3.32)

This should be almost perfectly conserved.



CHAPTER 3. USING THE PROGRAM 22

3.5.5 systate.out

This file contains sufficient information to restart the simulations. See the
run.inpt file entry above for more details.



Chapter 4

Utility Programs

This chapter describes the many utility programs that I have written for creating
basis sets and analysing the output. The more recent programs make use of
some general purpose modules that reside in the directory utilities/Modules.
The programs that make use of these modules are compiled using Makefiles
that will find these modules in this directory without them needing to copied
into the programs own directory. This achieved using the following line in the
Makefile:

VPATH= src:../Modules

Modifications to these modules should not change the manner in which the
existing functions are called. This is so as not to break any of the other programs
that make use of these modules. Currently the modules contained within this
directory are as follows:

basisset This module contains fortran types for storing basis sets. It also
contains various routines include routines for calculating overlap matrix
elements and reading in configurations from the amplitudes.out files.

errors This simple module contains two simple routines for dealing with errors
from opening and reading from files.

histogram This module defines a histogram type and functions for adding data
to any histograms that are created. It also contains routines for normalis-
ing these histograms and writing them to files.

morse This module contains data and functions associated with a Morse po-
tential. There available routines include those for reading parameters from
a file and projecting coherent states on to a Morse wave function.

polpak Strictly this is not a module but a set of routines that I found at
http://orion.math.iastate.edu/burkardt/f src/polpak/polpak.f90. These rou-
tines calculate Laguerre polynomials amongst other things. It is used here
as Laguerre polynomials appear in the expressions for the wave functions
in a Morse oscillator.

randgen This file contains a set of functions for choosing numbers from a
variety of distributions. I obtained it from the web pages of either Richard

23
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Chandler or Paul Northrop in the Department of statistics at UCL. I have
adapted the set up routine to use system calls for choosing a seed rather
than using a temporary file. I have also added the option to write out this
seed to the file unit of your choice.

vectorutiles This module contains a series of functions for rotating vectors
and solving 2 and 3 dimensional systems of linear equations by explicit
matrix inversion.

4.1 extractbasisfn.pl

A perl script to extract single basis functions from either amplitudes.out or
zpos.out.

4.2 plotwavefn

A fortran program to project the wave function for a single mode at a particular
step onto the x axis.

4.3 trainbasis

This little fortran program takes a simulation of a single basis function and
turns it in to a set of basis functions and writes a states.inpt file for use with
either the istates basis functions or the harmonic oscillator basis. An useful
addition would be to perturb slightly the positions. The options are currently:

The control file,trains.inpt must contain at least

nmodes <n>

nsteps <ns>

and possibly

trajmode <mode> can be either separate or single. Separate corresponds to

each mode having a separate file in its own sequentially

numbered directory.

Single describes the case when all modes are in one file.

Other entries may be:

dirstem <stem> Default: current directory.

ampfile <name> Name of file containing qs and ps. Default: amplitudes.out

qcol <c> Column containing q for separate mode. Default: 4.

qcol <c> Column containing p for separate mode. Default: 5.

firstcol <c> Column of first q for single mode. Default: 4.

randomise add a random delta q and delta p to each state

perturbations are drawn from a circular gaussian

probability distribution for z

rscale s Scale the widths of the aforementioned distributions.

The widths are s/gamma(i).
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There is also a script called lotsoftrains whose job it is to run the trainbasis
program several times and combine the results. This only really makes sense if
the randomise option is used. The lotsoftrains script requires an input file for
trainbasis but called trainsinput.inpt in order to distinguish it from trains.inpt.
It is called with the first part of the name for the output files and the number
of times which trainbasis should be run.

4.4 redistribute

The aim of this program is to read in a trajectory (zpos.out) and write out a new
amplitudes.out file in which the points are evenly distributed in space rather
than in time. The program is controlled by a file called redistribute.inpt.
This file should contain the following.

nsteps ns Number of steps in the initial zpos file

nsegments nsegs Number of equally spaced segments to split the trajectory
into.

The default behaviour maybe modified using the following options.

gamma g Gamma for this mode - used for converting between z a and q,p

trajfiles Including this causes the program to read a trajectory file that con-
tains q, p, prob rather than the default zpos.out file.

traj The line after should contain the name of the trajectory file to use. If
trajfiles is not specified, then this has no effect.

redisttraj The line after should contain the name of the new trajectory file to
be written. If trajfiles is not specified, then this has no effect. Instead,a
file called newamps.out is written.

closed This indicates that the trajectory is a closed loop and the first point is
added to the end of the trajectory.

displacefirst v Displace the first point around the new trajectory by vtrajlength/nsegments.

randdisplacefirst Same as displacefirst except that v is chosen randomly from
the interval [0,1].

The zpos.out file should contain

# Optionally, some comment lines

# Step

t Re(z) Im(z)

# Step

t Re(z) Im(z)

Alternatively, a trajectory file should contain

# Optionally, some comment lines

q1 p1 prob1

q2 p2 prob2
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4.5 energyaverage

A program for averaging energy.out files. The program can either do a straight
average or it can weight the values according to the overlap of the initial state
with a specified harmonic oscillator vibrational state. This includes vibrational
states which are actually super positions of harmonic oscillator states. The main
input file is called energyaverage.inpt. The energy.out files are assumed to
be in separate directories whose names comprise a common stem followed by
a number. If a weighted mean is required then the states.inpt files are also
read.

The input file energyaverage.inpt has the following arguments. Sometimes
order matters.

energy average

Requires an input file called energyaverage.inpt. Reads in

energy.out files from sequentially named directories.

Weighted means also require the states.inpt files.

This file should contain the following.

atype type = type may be either mean or weighted

dirstem Run = first part of directory name.

nruns 46 = Number of different runs e.g. Run1 -> Run46

nsteps 10000 = number of entries in energy.out

ndf 9 = number of degrees of freedom.

Note: the energy files should contain 2*ndf+3 columns

gamma = a list of gammas as per main ccs code. To be

followed by ndf lines n gamma.

basis harmosc = harmonic basis. Needed for the weighted

mean. Please see man ccs code manual

for details

4.6 average.pl

This is a perl script for averaging data files. It will average files containing 2
or more columns assuming that the first columns are all the same. It checks
to make sure they are and gives an error if it finds any deviation. It will also
calculate the standard deviation of the values and insert extra columns if desired.
These are useful as the can be used for error bars. Not all files need to have
the same number of entries but only in so much as some files may contain fewer
or more lines; those lines that are there must have the same values in the first
column. Run as

average.pl -h

to find out more about the usage of this script.
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4.7 recombinestates

When a basis set is created by joining trajectories for several different single-
mode simulations, the order in which the basis functions are combined matters.
In particular, if corresponding points are taken from each mode to form the
combined basis function then the norm of the resulting basis set will be low. If
points are chosen randomly then the resulting norm is significantly higher. This
is the aim of this program. It reads a states.inpt file and randomly creates
new sets. This program is interactive.

4.8 createbasis

This is a program for creating basis sets. Currently, it can create basis sets for
normal mode type systems, triatomic systems and tetraatomic systems. The
code requires an input file called createbasis.inpt. The system type is now
selected using keywords. If no system type is given, the it is assumed to be of
normal mode type. Note that the type does not change the basis file that it is
created so it is perfectly possible to use the normal mode system type to create
a basis function for a triatomic system. It depends what sort of basis set is
required.

Rather than using γ, this program actually uses ξ for selecting the basis
functions. ξ is taken to be the coherent state width associated with the potential.
I.e. the value that gives the ground state wave function. It reserves γ for the
width of the basis functions. These may be the same. However, the program
allows the basis functions chosen with width ξ to be reprojected on to a set of
basis functions with widths γ with the same mean values as the original set.
This option has not been used properly nor has it been thoroughly tested.

The input file should contain

ncartdim n Number of carteisan dimensions. Default: 0

nparticles n Number of particles. Default: 0

ndf n Number of degrees of freedom. Default: 1

nbasis n Number of basis functions to create. Default: 1

mass This should be followed by a mass for each particle. Default: none

xi The keyword should be followed by ndf lines containing an index integer i
(which is actually ignored) and then ξ for that degree of freedom. Default:
none

mxi As for xi, except it only needs to be followed by nparticles lines. The
program automatically gives all ncartdim degrees of freedom associated with
a particle the same value for γ.

gamma The keyword should be followed by ndf lines containing an index in-
teger i (which is actually ignored) and then γ for that degree of freedom.
Default: none
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pgamma As for gamma, except it only needs to be followed by nparticles lines.
The program automatically gives all ncartdim degrees of freedom associated
with a particle the same value for γ.

displace Should be followed by ndf lines containing 3 numbers: s, q0 and p0.
s is a dummy index. q0 and p0 are the amounts to displace the mode by.
Not sure this option works how it was envisaged.

systemtype The type of system to create a basis for. systemtype may be:
normalmodes, planartriatomic, tetraatomic or diatomic.

maxnterms nt This section deals with how to create the basis functions in
each mode. What needs to follow will be explained below.

randseed rs Specify the seed for the random number generator.

reproject Reproject basis functions on to a set of functions with the same
centres but different widths.

minsep m ms Specify that the basis functions must be separated by at least ms
in mode m.

minbfprob prob Specify a minimum probability for a basis function.

engrange minbfeng maxbfeng Specify an energy range in which the basis func-
tion must lie.

The options for choosing basis functions for each degree of freedom or mode
follow the maxnterms key word. The keyword is followed by an integer. This is
actually only needed when the wave function to be sampled is expressed as the
sum of the harmonic oscillator vibrational wave functions. If this is method is
not used the maximum number of terms should be set to 0.

The maxnterms line should be followed by a line containing Method meth,
where meth is the method to be used for the first degree of freedom. The
possible methods are single, sum, file and morse. Each of these require their
own options to follow. Once all the options have been given, there should be
another Method line followed by options for the next degree of freedom. This
pattern needs to be repeated for all degrees of freedom.

single

Choose basis functions from a single harmonic oscillator wave function. The
Method line should be

Method single vibmode comp q0 p0

In this, vibmode is the vibrational wave function to choose from. It should
therefore be an integer equal to or greater than zero. �comp is a compression
factor to use when choosing the basis function. q0 and p0 are the position of the
centre of the wave function. The basis functions are generated using essentially
the same routines as are in the main simulation program for doing the same.
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sum

This method is very similar to single except that the wave function is expressed
as the sum of harmonic oscillator vibrational wave functions. The method line
is followed by another line containing the coefficients of the harmonic oscillator
wave functions:

Method sum vibmode comp nterms

ec0 ec1 ec2 ec3

The second line contains nterms coefficients. nterms should be less than or
equal to maxnterms at the beginning of the section.

file

Read basis functions in from a file. There are various options that include
cswavefun and pair. The options are quite complicated.

morse

With this method, the basis functions are chosen using the morse module. This
module chooses basis functions from the Morse oscillator wave function. Alter-
natively it can use a file but projects the points on to the Morse wave function
in order to obtain the amplitude. The details of the Morse potentials are given
in a separate file called morseham.inpt. When specifying the Morse method,
a number needs to be given that determines which potential in morseham.inpt
should be used for this mode. The Method line therefore looks like:

Method morse n

where n is the integer to choose the potential to be used.
The morseham.inpt file contains details of the morse potentials. A typical

file may contain

nmodes 2

mode 1

A 45.314

alpha 2.045

r0 2.667

gamma 192.79

mass 39.975

viblevel 17

phasespace 2.2 4.5 -120 120

file

BrBrEquispaceTraj

mode 2

A 0.50243

alpha 1.67

r0 3.9

gamma 14.74

mass 16.11
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viblevel 0

phasespace 2.5 5.0 -25 25

wfnmc

The first line specifies that the file contains two Morse modes. The first begins
on the second line and is announced by the keyword mode. A, alpha and r0 are
the standard parameters of the Morse potential:

Vmorse(r) = A [1− exp (−α (r − r0))]
2
. (4.1)

gamma is the value of gamma corresponding to this potential. It is expected
that it is

γ =
µω

~
(4.2)

in which µ is the reduced mass of the mode however there is some evidence
that for highly excited vibrational levels that a reduced value may give better
results. The reduced mass of the mode µ is given on the following line and
is introduced by the keyword mass. The next line gives the vibrational level
that is to be sampled. Unfortunately, I don’t know a form for the Morse wave
function in phase space comparable to equation 3.1 for the harmonic oscillator.
Consequently, with the exception of using a predetermined list of points, basis
functions are chosen at random from a rectangular region of phase space whose
limits are given by the numbers following the keyword phasespace. The first
two denote maximum and minimum positions in Å where as the second two
numbers give the maximum and minimum allowable momenta in Å u (157.461
fs)−1 where u is the unified atomic mass and 157.461 fs is the internal unit of
time used by the program. This should really be modified, perhaps by using a
different keyword, to accept momenta in Å u fs−1 .

The next line indicates when the basis functions should be accepted after
they have been randomly chosen from the specified region of phasespace. There
options are:

energy Accept a basis function chosen if its energy lies within a specified range.
This range should be given on the next two lines. The first line should start
with the keyword mineng and be followed by the corresponding minimum
acceptable energy. The second line should start with the keyword maxeng

and be followed by the corresponding maximum acceptable energy.

montecarlo This option specifies that the basis function should be accepted
according to a Mont Carlo move dependent on its energy. The acceptance
probability is exp

(
−(E − En)2/(2σ2)

)
in which En is the energy of the vi-

brational level specified above. The width σ is specified on the next line and
should be introduced by the keyword sigma. Acceptance is then governed
by the value of a number selected randomly on the range [0,1].

wfnmc This denotes that a wave function Mont Carlo acceptance should be
used. This is similar to the montecarlo method except that the acceptance
probability is given by |〈z|ψn〉|2 in which φn is the wave function of the
vibrational level specified above.

grid This option does not actually use points chosen randomly from the speci-
fied region of phase space. Instead it chooses points from a grid that coves
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it. The number of rows and columns may be specified by specifying the
keywords nq and np followed by the desired integers. If either of these
lines are omitted, their corresponding value defaults to 21. The points to
be included can be reduced by specifying minimum and maximum accept-
able energies using the optional keywords mineng and maxeng followed by
the desired values. If either of these are omitted then the correspond bound
default to 1010 or −1010 as appropriate.

file Read in points for this mode from the file whose name appears on the next
line. With this option, although necessary for the parsing routine, the
phasespace region is redundant.

The contribution to the amplitude for the multidimensional basis function is
obtained by projecting the basis function on the desired Morse wave function.
The energy of the nth vibrational level of a Morse oscillator is

En = 2|α|~
(
A

2µ

) 1
2
(
n+

1

2

)
− α2~2

2µ

(
n+

1

2

)2

. (4.3)

and the corresponding wave function is

ψn (r) = Nn exp (ξ(r)) ξ(r)
bn L2bn

n (ξ(r)) (4.4)

in which

ξ(r) = 2

√
2µA

α~
exp [−α (r − r0)] (4.5)

and

bn =

√
−2µEn
α~

=

√
2µA

α~
− 1

2
− n . (4.6)

In equation 4.4, L2bn
n (ξ) are associated Laguerre polynomials and Nn is the

normalisation constant. A, α and re are parameters of the Morse potential,
equation 4.1, and µ is the reduced mass of the bond.

The projection of a 1D basis function onto the Morse wave function is

C = 〈z|ψn〉

=

∫
〈z|x〉〈x|ψn〉dx .

(4.7)

in which〈z|x〉 is given by the complex conjugate of equation 1.1 and 〈x|ψn〉 =
ψn (x). The program evaluates this integral numerically.

4.9 decay

Program to calculate the dissociation in systems of the form Br2NeN . The
dissociation is calculated using the distance between the centre of the Br-Br
vector and each Ne in turn.

It is possible to specify several options in the input file decay.inpt.

nbasis n Number of basis functions

rcut rc Cutoff Radius
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nneons ne Number of Neon atoms

nbromine nbr Number of Bromine atoms

gammaBr gbr Gamma for Bromine atoms. Default: 385.57 / Å
2

gammaNe gne Gamma for Neon atoms. Default: 10.1 / Å
2

writedissconfig Write out configuration at dissociation. Default: false

t0 t0 Specify the initial time

pad Start the plot of dissociation rate from 0 even if t0 ¿ 0. Default: false

dt dt Time between configurations

simweight sw For doing secondary dissociation. Simply writes this as the
weight in the dissociation file header to be used by he averaging program.
Default: 1

multifile nf The trajectory has been split into nf files. The names of which
follow on separate lines.

nfiles nf Calculate the dissociation rate using trajectories in several files, the
names of which follow separate lines. Used for send stage decay. The final
dissociation probability is obtained by summing the dissociation probability
calculated from each file.

ampfile Name of a single ampltiudes.out file to use follows on a separate line.
Default: amplitudes.out

4.10 brenergy

Calculates the brenergy upon dissociation of a Ne. Dissociation is as for the
decay program. The program is controlled through a file called brenergy.inpt
which may contain the following options.

nbasis nbf Number of basis functions

rcut rc Only include basis functions for which rBrBr > rc. Default: 12 Å.

nbins nb Number of bins for the energy distributions. Default: 100

min engmin Minimum energy for Br-Br energy histogram. Default: -12 kJ/mol

max engmax Maximum energy for Br-Br energy histogram. Default: 02 kJ/mol

brnemin engmin Minimum energy for energy histogram

brnemax engmax Maximum energy for energy histogram

gammaBr gBr Br gamma. Default: 385.57 Å−2

gammaNe gNe Ne gamma. Default: 10.15 Å−2

quantise Calculate projections of wave function/dissociated basis function on
to Br-Br vibrational modes.
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vrange vmin vmax The initial Br-Br vibrational state νi is specified in morse-
ham.inpt. This gives the range of states over which to calculate the projec-
tion. I.e. project on to vibrational levels νi + δν with δν ∈ [vmin, vmax].

ampfile The name of a single amplitude file should appear on the following
line.

multifile nf The trajectory has been split into nf files. The names of which
follow on separate lines.

suffix A suffix to append to the names of the output files should appear on the
following line.

tmin tmin Do not include dissociation events that happen before tmin in the
distributions. Default: tmin = −1020.

tmax tmax Stop calculating the distributions at tmax. Default: tmax = 1020.

4.11 autocorrelation

This program calculates an autocorrelation function from a series of amplitudes
files. The autocorrelation function is

P (t) = |〈ψ(0)|ψ(t)〉|2 . (4.8)

In CCS,

ψ(t) =

N∑
j=1

Dj(t) exp (iSj(t)) |zj〉 . (4.9)

The autocorrelation function is therefore

P (t) =

∣∣∣∣∣∣
N∑
j=1

N∑
k=1

D∗jDk exp (i (Sk(t)− Sj(t))) 〈z(0)|z(t)〉

∣∣∣∣∣∣
2

. (4.10)

4.12 Histogram

This is a small program to create a histogram from a file containing a column
of data. The program allows the column containing the data to be specified.
Currently only handles implicitly equally weighted data.



Chapter 5

Variables

This chapter lists the main variables located in each module. Large arrays
should go into the arrays module. Parameters for the hamiltonian are in the
hamiltonian module and the options module holds other details.

However, I am afraid that this chapter is probably now some what out of
date. A lot of it should still be relevant though.

5.1 Options module

Units

tu [real] factor to convert system time units to femtoseconds for output

energyunits [character string] energy units for output files.

massunits [character string] containing mass units for output files.

Control variables

nsteps [integer] Number of steps to perform

dt [real] Time step

classical [logical] Do a purely classical simulation

basismethod [integer] Method for assigning basis functions

1. grid

2. random from a gaussian distribution

3. initial states (from states.inpt file)

4. harmonic basis functions

minprob [real] Minimum probability for basis functions. If probability be-
comes less than this for a particular basis function then that basis function
is effectively removed. Set to a negative value to turn off basis function
removal.

34
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maxz [real] As a above but where z in each degree of freedom is constrained to
be less than this value. Set to a negative value to turn off removal.

verbosity [integer] How much info should be written to output file.

Output Control

The following are all the period at which the quantities are calculated and
written to file. Set to zero to not calculate/write out a particular quantity.

ccorlog [integer] correlation function.

hcorfreq [integer]harmonic oscillator correlation function.

writeposfreq [integer] positions

writeCDfreq [integer] C and D.

writeampfreq [integer] amplitudes

writeSfreq [integer] classical action

writeEfreq [integer] energy

writeacffreq [integer] autocorrelation function

writenormfreq [integer] wave function norm

dumpfreq [integer] restart file.

5.2 Arrays module

t [real] Current time in this simulation

pt [real] Accumulated time in previous simulations. Total time is t+pt.

psteps [integer] The number of steps done before this run.

toteng [real] Total (quantum) energy of the system.

dtoteng [real] Change in total energy due to the removal of some basis func-
tions.

zb [complex array, dimension ndf,nbasis] The basis functions.

S [real array, dimension nbasis] The classical action.

C [complex array, dimension nbasis] wave function coefficient.

D [complex array, dimension nbasis] wave function coefficient.

initnorm [real] Initial norm of the wave function.

incbf [logical array, dimension nbf] Determines if each basis function is included
or not.

oldincbf [logical array, dimension nbf] Working array for determining if each
basis function is included or not.
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Initial states/setting up basis functions

Working arrays

Unless you have just assigned values, don’t assume that they have correct or
even sensible values.

zbnew, zk1, zk2, zk3, zk4 [complex arrays, dimension ndf,nbasis]

Snew, Sk1, Sk2, Sk3, Sk4 [real arrays, dimension nbasis]

Cnew, Ck1, Ck2, Ck3, Ck4, Dold [complex arrays, dimension nbasis]

overlpm [complex array, dimension nbasis,nbasis] The overlap matrix

FERR, BERR, RWORK [real arrays, dimension] For the LAPACK rou-
tines.

ipiv [integer array, dimension nbasis ] For the LAPACK routines.

WORK [complex array, dimension 2×nbasis] For the LAPACK routines.

LWORK [integer] size of WORK.

overlpmf [complex array, dimension nbasis,nbasis]
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